Name _____

The Great Density Challenge Answer Key

1.
$$D = \frac{540}{200} = 2.7 \,\mathrm{g/cm^3}$$

2.
$$m = 2.5 \times 40 = 100 \,\mathrm{g}$$

3.
$$V = \frac{150}{3.0} = 50 \, \mathrm{cm}^3$$

4. Volume =
$$4^3 = 64 \, \text{cm}^3$$
;

$$D=rac{1680}{64}=26.25\,{
m g/cm^3}$$

5.
$$D=rac{3.25}{2500}=0.0013\,\mathrm{g/mL}$$

- **6.** Densities $< 1.0 \text{ g/mL float} \rightarrow A (0.75) \text{ and C (0.99) float; B (1.15) sinks.$
- **7.** Volume \downarrow by 1/2, mass same \rightarrow Density **doubles** (since $D=\frac{m}{V}$).
- **8.** Both have $D=\frac{60}{20}=3.0\,{
 m g/cm^3}$ and $\frac{180}{60}=3.0\,{
 m g/cm^3}$.
 - → Same density, proving density is independent of size.

9.
$$2.7 \,\mathrm{g/cm^3} = 2700 \,\mathrm{kg/m^3}$$

10. Total mass =
$$(100 \times 0.9) + (200 \times 1.0) = 90 + 200 = 290 g$$

Total volume =
$$100 + 200 = 300 \text{ mL}$$

$$D_{
m avg} = rac{290}{300} = 0.97\,{
m g/mL}$$