Name			

Density Detectives: Working with Lab Data

In laboratory experiments, density is often determined by measuring mass and volume carefully and then calculating: $D=\frac{m}{v}$

Small **measurement errors** can affect results. Always record data carefully, use consistent units, and calculate density to the correct number of **significant figures**.

1. A student collects the following data for a metal sample:

Trial	Mass (g)	Volume (cm³)	
1	56.8	7.1	a) Calculate the density for each trial
2	56.5	7.0	b) Determine the average density
3	57.0	7.2	

2. A rectangular metal block has measured dimensions: length = 4.00 cm, width = 2.50 cm, height = 1.20 cm, and mass = 90.0 g.

Find the density using the calculated volume. _____

3. A student measures the mass of a liquid-filled beaker:

Empty beaker: 125.0 g Beaker + liquid: 235.5 g The liquid volume is 100.0 mL.

What is the density of the liquid? _____

Sample Mass (g) Volume (cm³)

Α	54	20
В	27	10
С	80	10

Identify the correct sample: _____

- **5** . A rock sample displaces 45.0 mL of water in a graduated cylinder and has a mass of 122.0 g. Find the density of the rock. _____
- 6. A student reports a density of 8.9 g/cm³, but the accepted value is 8.96 g/cm³. Find the percent error.

